- 1. Let $n = 4k^2$. Consider the following Boolean function $f : \{0,1\}^n \to \{0,1\}$. View the n variables \mathbf{x} as a $2k \times 2k$ matrix $\mathbf{x} = \{x_{i,j}\}, i,j \in [2k]$. Then $f(\mathbf{x}) = 1$ if there exists a row of the form $0^a 110^b$, i.e., there are two consecutive 1's and all other variables are 0's. What is exactly D(f)? (Note that you need to give both a query algorithm for the upper bound part and an adversary strategy for the lower bound part.)
- 2. Let NAE denote the following function: NAE $(x_1, x_2, x_3) = 1$ if the three bits x_1, x_2, x_3 are not all equal; NAE $(x_1, x_2, x_3) = 0$ if $x_1 = x_2 = x_3 = 0$ or 1. Let $n = 3^k$ and $f : \{0, 1\}^n \to \{0, 1\}$ denote the Boolean function where we apply k levels of NAE over the 3^k input variables. What are s(f) and D(f)?
- 3. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is monotone if for all $\mathbf{x}, \mathbf{y} \in \{0,1\}^n$ such that $\mathbf{x} \leq \mathbf{y}$, i.e., $x_i \leq y_i$ for all $i \in [n]$, we have $f(\mathbf{x}) \leq f(\mathbf{y})$. Show that $s(f) = \mathrm{bs}(f) = C(f)$ for all monotone Boolean functions. Conclude that $D(f) \leq \mathrm{bs}(f)^2$ and this quadratic gap is tight for monotone Boolean functions.
- 4. Show that every function $f: \{0,1\}^n \to \mathbb{R}$ can be uniquely expressed as a multilinear polynomial p:

$$p(\mathbf{x}) = \sum_{S \subseteq [n]} c_S \prod_{i \in S} x_i, \quad \text{where each } c_S \in \mathbb{R},$$

such that $p(\mathbf{x}) = f(\mathbf{x})$ for all $\mathbf{x} \in \{0, 1\}^n$.

5. Use Markov's inequality to prove the following corollary we used in class. If $p: \mathbb{R} \to \mathbb{R}$ is a polynomial that satisfies $c \leq p(x) \leq d$ for all $a \leq x \leq b$, then we have

$$\max_{a \le x \le b} |p'(x)| \le (\deg(p))^2 \cdot \frac{d-c}{b-a}.$$

6. Show that if $f: \{0,1\}^n \to \{0,1\}$ is non-constant, symmetric, and monotone, then $\deg(f) = n$. (Hint: Symmetrization, and the connection between the number of roots and degree of a univariate polynomial.)