1 Deterministic complexity measures and their relations

In the previous lecture we have seen that it holds that \(D(f) \geq C(f) \geq bs(f) \geq s(f) \) for boolean functions \(f : \{0, 1\}^n \to \{0, 1\} \). It is an open question if \(D(f) \) can be upper bounded by a power of \(s(f) \), e.g. \((s(f))^{100} \geq D(f) \geq s(f) \).

Example 1. Let \(n = 4k^2 \) and let \(f \) be a function that takes as input a boolean matrix of dimensions \(2k \times 2k \). The function outputs 1 if there is a row of the form \(0^a110^b \) for \(a, b \geq 0 \), otherwise it outputs 0.

For the above function we have that:

- \(s_x(f) = \sqrt{n} \) for the worst case input \(x \) with one row congaing exactly two consecutive 1 that allows you many ways to change the value by flipping a bit.
- \(bs(f) = n/2 \), for the zero matrix input were we need to flip two consecutive bits that count as a block to 1 to change the function's output.
- \(D(f) = n \).

The above example is the biggest gap we have between the \(s(f) \), \(bs(f) \) measures. It is an open question whether there are functions \(f \) for which \(bs(f) \gg (s(f))^2 \). Another open questions is whether there is a constant \(k \) such that \(bs(f) \leq O(s^k(f)) \) for all functions \(f \).

Theorem 2. It holds that \(D(f) \leq (bs(f))^3 \).

Proof. We need to show the following:

I. \(C(f) \leq s(f) \cdot bs(f) \)

II. \(D(f) \leq C_1(f) \cdot bs(f) \), \(D(f) \leq C_0(f) \)

Lemma 3. If \(B \subseteq [n] \) is a minimal sensitive block for \(x \) then \(|B| \leq s(f) \)

Proof. As \(B \) is a minimal sensitive block for \(x \) we have that \(f(x) \neq f(x^{(B)}) \). If we pick an \(i \in B \) then it must be the case that \(f(x) = f(x^{(B-\{i\})}) \neq f(x^{(B)}) \) since \(B \) is minimal. Thus we have \(s(f) \geq s_{x(B)}(f) \geq |B| \).

Proof. (I.) : Given \(x, f \) we need to find a certificate \(C \) for \(x \) with \(|C| \leq s(f) \cdot bs(f) \). Let \(B_1, \ldots, B_b \) be disjoint minimal sensitive blocks for \(x \) with \(b = bs_x(f) \). Thus we have that \(|B_i| \leq s(f) \). Our goal is to show that \(C = \cup_i B_i \) is a certificate for \(x \). If it wasn’t there would be a a \(y \) such that \(y/c = x/c \) but \(f(y) \neq f(x) \). Thus there is a \(B \) such that \(B \cap C = \emptyset \) and by having \(y = x^{(B)} \) we contradict the fact that \(b = bs_x(f) \).

\(\Box \)
Proof. (II.) : (The proof is for $C_1(f)$, similarly for $C_0(f)$). For this part we design an algorithm A deciding $f(x)$:

- Maintain a set $X \subseteq \{0,1\}^n$ which contains all strings that are consistent with the query results so far (initially $X = \{0,1\}^n$).
- Repeat $bs(f)$ many times:
 - Check is all $x \in X$ have the same $f(x) = b$. If yes then output b.
 - If there is a $y \in X$ with $f(y) = 1$:
 * We can find a certificate C of y with $|C| = C_y(f)$. If there is no such C we return 0.
 * We query all variables in C that have not yet been queried.
 * We update X.
- We check if all $x \in X$ have the same $f(x)$.

The above algorithm terminates with $bs(f)$ loops and queries $C_1(f)$ variables in each iteration. For correctness proof we assume towards contradiction that during the check step that there is a $z \in \{0,1\}^n$ such that $f(z) = 0$ that survived. In loop 1 we picked a y_1 that is consistent with all queries so far and all variables in C_1 are queried.

Claim 4. There is a $B_1 \subseteq C_1$ such that B_1 is sensitive block for z.

Then in loop 2 we pick a y_2 that is consistent with queries so far and C_2 is a certificate for y_2 (with $f(y_2) = 1$). Thus all variables in $C_2 - C_1$ are queried.

Claim 5. There is a $B_2 \subseteq C_2 - C_1$ such that B_2 is a sensitive block for z.

C_2 will have some bits same as C_1 along with new bits. We know that $z/C_2 \neq y_2/C_2$ and $z/C_1 \neq y_2/C_1$. By the end of the algorithm we have $b+1$ disjoint sensitive blocks B_1, \ldots, B_{b+1} ($B_i \subseteq C_i - C_{i-1}$) for z contradicting the block sensitivity being $bs(f)$.

2 The degree of a function

Definition 6. We define the degree of $f : \{0,1\}^n \to \{0,1\}$ $\deg(f)$ as the degree of the polynomial $p : \mathbb{R}^n \to \mathbb{R}$ such that $p(x) = f(x)$ for all $x \in \{0,1\}^n$.

We observe that the above polynomial will be a multilinear polynomial, i.e. a polynomial of the form $p(x) = \sum_{S \subseteq [n]} a_S \prod_{i \in S} x_i$.

Lemma 7. For every f there is a unique multilinear polynomial p such that $p(x) = f(x)$ over all $x \in \{0,1\}^n$.

The degree of f $\deg(f)$ will be the degree of this unique p, so it is well defined.
Example 8. Let \(n = 3^k \) and consider the function consisting of \(k \) levels of the function \(E(x_1x_2x_3) \) which is 1 there are either 1 or 2 “1” in \((x_1,x_2,x_3) \), otherwise it is 0.

We have that \(\deg(f) = 2^k \) and the corresponding polynomial is \(p_E = x_1 + x_2 + x_3 - x_1x_2 - x_2x_3 - x_1x_3 \) over all \(x \in \{0,1\}^3 \). It also holds that \(D(f) = 3^k \).

Theorem 9. It holds that \(D(f) \geq \deg(f) \).

Proof. We can see that from constructively by following a path along the decision tree of \(f \). For example the path \((x_1)\) with value \(0 \rightarrow (x_2) \) with value \(1 \rightarrow (x_3) \) with value \(0 \rightarrow 1 \), from the root of the decision tree to a leaf with value 1 can be represented as \((1 - x_1)x_2(1 - x_3)\). Thus the degree of the polynomial representing each path is at most \(D(f) \).

Theorem 10. It holds that \(D(f) \leq O(\deg^4(f)) \).

To show that we need to prove that:

A. \(bs(f) \leq 2(\deg(f))^2 \)

B. \(D(f) \leq (\deg(f))^2 \cdot bs(f) \leq (\deg(f))^4 \).

Lemma 11. Markov brother’s inequality: For every polynomial \(p : \mathbb{R} \to \mathbb{R} \) of degree \(d \) it holds that

\[
\max_{x \in [-1,1]} |p'(x)| \leq d^2 \max_{x \in [-1,1]} |p(x)|.
\]

Corollary 12. If for a polynomial \(p \) of degree \(d \) we have \(c \leq p(x) \leq d \) for \(a \leq x \leq b \) then

\[
\max_{x \in [a,b]} |p'(x)| \leq d^2 \frac{d-c}{b-a}.
\]

Theorem 13. For a polynomial \(p : \mathbb{R} \to \mathbb{R} \) with \(b_1 \leq p(i) \leq b_2 \) for all integers \(0 \leq i \leq n \) and \(|p'(x)| \geq c \) for some \(0 \leq x \leq n \) it holds that \(\deg(p) \geq \sqrt{cn/(c + b_2 - b_1)} \).

Proof. Let \(\beta = \max\{0, \max_{0 \leq x \leq n} p(x) - b_2, \max_{0 \leq x \leq n} b_1 - p(x)\} \).

- Case \(\beta = 0 \): Then we apply the corollary for \(a = 0, b = n, c = b_1, d = b_2 \) so that we have

 \[
 (\deg(p))^2 \frac{b_2 - b_1}{n} \geq c \Rightarrow \deg(p) \geq \sqrt{\frac{nc}{b_2 - b_1}}.
 \]

- Case \(\beta > 0, b = \max_{0 \leq x \leq n} \). Then we apply the corollary for \(a = 0, b = n, c = b_1 - \beta, d = b_2 + \beta \) so that we have

 \[
 (\deg(p))^2 \frac{b_2 - b_1 + 2\beta}{n} \geq c.
 \]

 In this case there must be a \(X \) such that \(|p'(X)| \geq 2\beta \) and we can use \(2\beta \) in the place of \(c \), having that \((\deg(p))^2 \frac{b_2 - b_1 + 2\beta}{n} \geq 2\beta \). From the above we conclude that

 \[
 \frac{(\deg(p))^2}{n} \geq \max\{ \frac{c}{b_2 - b_1 + 2\beta}, \frac{2\beta}{b_2 - b_1 + 2\beta} \}
 \]

To prove theorem 10 [A.] we need to prove that \(\deg(f) \geq \sqrt{\frac{3}{2}} \) with \(b = bs(f) \). The full proof is given in the following lecture. For now we describe the steps towards that.

First we consider a polynomial \(p \) of degree \(\deg(f) = d \) such that \(p(x) = f(x) \) for all \(x \in \{0,1\}^n \).

- We construct a new polynomial \(g(y_1 \ldots y_k) \) from \(p \) with: \(\deg(g) \leq \deg(f) \), \(g(\overline{0}) = 0 \) and \(g(\overline{1}) = 1 \).
• We construct a symmetric function h from g (due to Minsky-Papert), being $h(x)\sum_{\pi \in S_b} \frac{g(x_{\pi})}{b!}$. A symmetric function is a function that its outcome does not change if we permute the input variables.

 – The function h is symmetric as its value depends only on the Hamming weight of the input. That is there is a function $f^* : [0, n] \rightarrow \mathbb{R}$ such that $h(x) = h^*(|x|)$.
 – h^* has degree $\leq \deg(g)(\leq \deg(f))$ and $h^*(0) = 0, h^*(1) = 1$.
 – We can now use the corollary on h^*