Lower Bounds in Theoretical Computer Science, Fall 2013 Instructors: Xi Chen

Lecture 1: Introduction
September 3, 2013 Scribe: Fernando Krell

1 First Lower Bound: Sorting through comparisons
Sort,: Given a permutation z = x1..x, of [n] output a permutation 7 such that
Tr(1) < Tr2) < < Tp(p)

We will analyse the number of comparison needed to sort the elements using a decision tree.
Each node of the tree represent a comparison, and leafs represent the permutation computed.
Let t be a decision tree and x representing an instance. Lets define the following functions:

e cost(t,x): # of comparison made along the path that traverse ¢ using input z.
e cost(t) = maxy{cost(t,x)}.

e D(P) minimum cost (t) overall trees ¢ that solves problem P.

Question: What is D(Sorty,)?
Theorem 1. D(Sort,) > Q(nlogn)

Proof. We will use a counting argument.
If ¢ solves Sort,, for every possible input then ¢ has at least n! leaves because every possible
permutation must appear in a leaf.
Since the tree is binary, it must have depth at least logn! = ©(nlogn). Thus, we conclude that
D(Sort,) = Q(nlogn).
O

We have used a deterministic decision tree. We can also use randomized decision trees, where
nodes may represent comparisons or probabilitic decision (e.g. go to left subtree with probability
1/3).

If a probabilistic tree is correct, then it induce a probability distribution over deterministic
trees. The mapping is as follows: we build a tree by just flipping the coins before hand and remove
paths in the randomized tree as coins decide.

Let p be distribution over deterministic trees. We define cost(p, z) = Eycp[cost(t, x)].
Theorem 2. For all distributions p cost(p) := max,{cost(p,z)} = Q(nlogn)

Proof. Step 1: Assume that cost(p) = C. Then Vz E.cplcost(t,z)] < C. Using markov’s inequality
we obtain that Pr[cost(t,z) > 2] < W <1/2.

Claim: There is t such that for at least half of inputs x, cost(t,z) < 2C.

Lets define the indicatior random variable Y, = 1 if and only if cost(¢,z) < 2C. Then,

B Vel = > EiYi

— ZPr[Yx =1]
= ZPr[cost(t,ﬂf) < 2C]

n!

>
-2

This implies (by counting argument) that there is a tree that solve half the instances with < 2C
comparisons. Therefore we can conclude that 2C' > logn!/2, and thus, C' = Q(nlogn). O

2 Decision Trees

Let f:{0,1}" — {0,1} be a function. Given access to black box bit-access to input x, how many
access to the black box are needed to compute a function f on input =7

Example 1: OR,(z1, ..., zn) = V x;. D(OR,) = n.

Example 2: GC,,: Graph Connectivity of an m-vertex graph G (n = (7y)). D(GCn:(m)) = n.

Conjecture 1. Any non-constant monotone function f has D(f) =n
However, It is known that D(f) = Q(n).
Definition 1. A funtion f is evasive if D(f) = n.

Example 3: k — Block-CNF(x1, 22,73, ..., T2) = (21 V oe. V.TR) A oo A (Tp(rm1)41 V o V Tp2).
D(f) =n=k?
Example 4: f(x1, ..., Xk, Y1, ooy Yok) = Yzyzo..an- D(f) =k +1
x)

Definition 2 (Certificates). Given x € {0,1}" with f(x) = b € {0,1} a b-certificate for z is S C [n]
such that for all ' € {0,1}"™ with 2’| = z|s f(2') = f(x).

o c;(f): smallest k such that x has a f(z)-certificate S of size |S| < k
* Cb(f) = maxx:f(x):b{cx(f)}
o C(f) = max(Co(f), C1(f))

Examples: C1(OR,,) =1, Co(OR,) = n, Cy(k-Block-CNF) = k (need to show one entire zero
block), C;(k-Block-CNF) = k (need a 1 representative for each block).

Theorem 3. D(f) > C(f)

Proof sketch: Every path in the best tree for f is a certificate for some input.

We will see later that D(f) < C(f)?.

Definition 3 (Sensitivity). Given f,z we say that i € [n] is sensitive for x if f(x) # f(z®) (flip
i-th bit of x)

o S.(f) = # i that are sensitive for x.

o S(f) =max,{S.(f)}
Theorem 4. D(f) > S(f)

Proof sketch: Let t be the best the tree for f. For every x let T}, C [n] the path on ¢ taken on
input x. We first note that for every = |T| < D(f) by definition of D(f). Also we note that the
set of sensitive values for x is a subset of T', since values not in the path cannot change the value
of the function. Then S, < |T,|, and thus S, < D(f) for every x.

Definition 4 (Block Sensitivity). Given f,x we say that B C [n] is sensitive for x if f(x) # f(z(P))
(flip all bits indicated by B)

e bs,(f): maximum k such that there are disjoint By, ..., B, where B; is sensitive for x

e bs(f) = max,{bs.(f)}
Theorem 5. D(f) > C(f) > bs(f) > S(f)

Proof Sketch: We will prove that C(f) > bs(f). Fix an input string x. Each sensitive block for
x must contain a member of a certificate for x. Otherwise, flipping the bits of a sensitive block B
not containing a certificate member will change the value of the function. However, both strings x
and z(®) have same certificate, reaching the contradiction.

	First Lower Bound: Sorting through comparisons
	Decision Trees

