Lower Bounds in Theoretical Computer Science, Fall 2013

Instructors: Xi Chen

Lecture 1: Introduction

September 3, 2013

Scribe: Fernando Krell

1 First Lower Bound: Sorting through comparisons

Sort_n: Given a permutation $x = x_1 \dots x_n$ of [n] output a permutation π such that

 $x_{\pi(1)} < x_{\pi(2)} < \dots < x_{\pi(n)}$

We will analyse the number of comparison needed to sort the elements using a decision tree. Each node of the tree represent a comparison, and leafs represent the permutation computed.

Let t be a decision tree and x representing an instance. Lets define the following functions:

- cost(t, x): # of comparison made along the path that traverse t using input x.
- $\operatorname{cost}(t) = \max_{x} \{\operatorname{cost}(t, x)\}.$
- D(P) minimum cost(t) overall trees t that solves problem P.

Question: What is $D(\texttt{Sort}_n)$?

Theorem 1. $D(\texttt{Sort}_n) \ge \Omega(n \log n)$

Proof. We will use a *counting argument*.

If t solves $Sort_n$ for every possible input then t has at least n! leaves because every possible permutation must appear in a leaf.

Since the tree is binary, it must have depth at least $\log n! = \Theta(n \log n)$. Thus, we conclude that $D(\texttt{Sort}_n) = \Omega(n \log n)$.

We have used a deterministic decision tree. We can also use randomized decision trees, where nodes may represent comparisons or probabilitic decision (e.g. go to left subtree with probability 1/3).

If a probabilistic tree is correct, then it induce a probability distribution over deterministic trees. The mapping is as follows: we build a tree by just flipping the coins before hand and remove paths in the randomized tree as coins decide.

Let p be distribution over deterministic trees. We define $cost(p, x) = \mathbb{E}_{t \in p}[cost(t, x)]$.

Theorem 2. For all distributions $p \operatorname{cost}(p) := \max_x \{\operatorname{cost}(p, x)\} = \Omega(n \log n)$

Proof. Step 1: Assume that cost(p) = C. Then $\forall x \mathbb{E}_{t \in p}[cost(t, x)] \leq C$. Using markov's inequality we obtain that $Pr[cost(t, x) \geq 2] \leq \frac{\mathbb{E}_t[cost(t, x)]}{2C} \leq 1/2$.

Claim: There is t such that for at least half of inputs x, cost(t, x) < 2C.

Lets define the indicatior random variable $Y_x = 1$ if and only if cost(t, x) < 2C. Then,

$$\begin{split} \mathbb{E}_t[\sum_x Y_x] &= \sum_x \mathbb{E}_t[Y_x] \\ &= \sum_x \Pr[Y_x = 1] \\ &= \sum_x \Pr[\texttt{cost}(t, x) < 2C] \\ &\geq \frac{n!}{2} \end{split}$$

This implies (by counting argument) that there is a tree that solve half the instances with < 2C comparisons. Therefore we can conclude that $2C \ge \log n!/2$, and thus, $C = \Omega(n \log n)$.

2 Decision Trees

Let $f: \{0,1\}^n \to \{0,1\}$ be a function. Given access to black box bit-access to input x, how many access to the black box are needed to compute a function f on input x?

Example 1: $OR_n(x_1, ..., x_n) = \bigvee x_i$. $D(OR_n) = n$. Example 2: GC_n : Graph Connectivity of an *m*-vertex graph $G(n = \binom{m}{2})$. $D(GC_{n = \binom{m}{2}}) = n$.

Conjecture 1. Any non-constant monotone function f has D(f) = n

However, It is known that $D(f) = \Omega(n)$.

Definition 1. A function f is evasive if D(f) = n.

Example 3: $k - \text{Block-CNF}(x_1, x_2, x_3, ..., x_{k^2}) = (x_1 \lor ... \lor x_k) \land ... \land (x_{k(k-1)+1} \lor ... \lor x_{k^2}).$ $D(f) = n = k^2$

Example 4: $f(x_1, ..., x_k, y_1, ..., y_{2^k}) = y_{x_1x_2...x_k}$. D(f) = k + 1

Definition 2 (Certificates). Given $x \in \{0,1\}^n$ with $f(x) = b \in \{0,1\}$ a b-certificate for x is $S \subseteq [n]$ such that for all $x' \in \{0,1\}^n$ with $x'|_S = x|_S f(x') = f(x)$.

- $c_x(f)$: smallest k such that x has a f(x)-certificate S of size $|S| \leq k$
- $C_b(f) = \max_{x:f(x)=b} \{c_x(f)\}$
- $C(f) = \max(C_0(f), C_1(f))$

Examples: $C_1(OR_n) = 1$, $C_0(OR_n) = n$, $C_0(k-Block-CNF) = k$ (need to show one entire zero block), $C_1(k-Block-CNF) = k$ (need a 1 representative for each block).

Theorem 3. $D(f) \ge C(f)$

Proof sketch: Every path in the best tree for f is a certificate for some input.

We will see later that $D(f) \leq C(f)^2$.

Definition 3 (Sensitivity). Given f, x we say that $i \in [n]$ is sensitive for x if $f(x) \neq f(x^{(i)})$ (flip *i*-th bit of x)

• $S_x(f) = \# i$ that are sensitive for x.

• $S(f) = \max_x \{S_x(f)\}$

Theorem 4. $D(f) \ge S(f)$

Proof sketch: Let t be the best the tree for f. For every x let $T_x \subseteq [n]$ the path on t taken on input x. We first note that for every $x |T_x| \leq D(f)$ by definition of D(f). Also we note that the set of sensitive values for x is a subset of T, since values not in the path cannot change the value of the function. Then $S_x \leq |T_x|$, and thus $S_x \leq D(f)$ for every x.

Definition 4 (Block Sensitivity). Given f, x we say that $B \subset [n]$ is sensitive for x if $f(x) \neq f(x^{(B)})$ (flip all bits indicated by B)

- $bs_x(f)$: maximum k such that there are disjoint $B_1, ..., B_k$ where B_i is sensitive for x
- $bs(f) = \max_x \{bs_x(f)\}$

Theorem 5. $D(f) \ge C(f) \ge bs(f) \ge S(f)$

Proof Sketch: We will prove that $C(f) \ge bs(f)$. Fix an input string x. Each sensitive block for x must contain a member of a certificate for x. Otherwise, flipping the bits of a sensitive block B not containing a certificate member will change the value of the function. However, both strings x and $x^{(B)}$ have same certificate, reaching the contradiction.