
Lower Bounds in Theoretical Computer Science, Fall 2013 Instructors: Xi Chen

Lecture 1: Introduction
September 3, 2013 Scribe: Fernando Krell

1 First Lower Bound: Sorting through comparisons

Sortn: Given a permutation x = x1..xn of [n] output a permutation π such that

xπ(1) < xπ(2) < · · · < xπ(n)

We will analyse the number of comparison needed to sort the elements using a decision tree.
Each node of the tree represent a comparison, and leafs represent the permutation computed.

Let t be a decision tree and x representing an instance. Lets define the following functions:

• cost(t, x): # of comparison made along the path that traverse t using input x.

• cost(t) = maxx{cost(t,x)}.

• D(P) minimum cost(t) overall trees t that solves problem P .

Question: What is D(Sortn)?

Theorem 1. D(Sortn) ≥ Ω(n log n)

Proof. We will use a counting argument.
If t solves Sortn for every possible input then t has at least n! leaves because every possible

permutation must appear in a leaf.
Since the tree is binary, it must have depth at least log n! = Θ(n log n). Thus, we conclude that

D(Sortn) = Ω(n log n).

We have used a deterministic decision tree. We can also use randomized decision trees, where
nodes may represent comparisons or probabilitic decision (e.g. go to left subtree with probability
1/3).

If a probabilistic tree is correct, then it induce a probability distribution over deterministic
trees. The mapping is as follows: we build a tree by just flipping the coins before hand and remove
paths in the randomized tree as coins decide.

Let p be distribution over deterministic trees. We define cost(p, x) = Et∈p[cost(t, x)].

Theorem 2. For all distributions p cost(p) := maxx{cost(p, x)} = Ω(n log n)

Proof. Step 1: Assume that cost(p) = C. Then ∀x Et∈p[cost(t, x)] ≤ C. Using markov’s inequality

we obtain that Pr[cost(t, x) ≥ 2] ≤ Et[cost(t,x)]
2C ≤ 1/2.

Claim: There is t such that for at least half of inputs x, cost(t, x) < 2C.
Lets define the indicatior random variable Yx = 1 if and only if cost(t, x) < 2C. Then,

1

Et[
∑
x

Yx] =
∑
x

Et[Yx]

=
∑
x

Pr[Yx = 1]

=
∑
x

Pr[cost(t, x) < 2C]

≥ n!

2

This implies (by counting argument) that there is a tree that solve half the instances with < 2C
comparisons. Therefore we can conclude that 2C ≥ log n!/2, and thus, C = Ω(n log n).

2 Decision Trees

Let f : {0, 1}n → {0, 1} be a function. Given access to black box bit-access to input x, how many
access to the black box are needed to compute a function f on input x?

Example 1: ORn(x1, ..., xn) =
∨
xi. D(ORn) = n.

Example 2: GCn: Graph Connectivity of an m-vertex graph G (n =
(
m
2

)
). D(GCn=(m2)) = n.

Conjecture 1. Any non-constant monotone function f has D(f) = n

However, It is known that D(f) = Ω(n).

Definition 1. A funtion f is evasive if D(f) = n.

Example 3: k − Block-CNF(x1, x2, x3, ..., xk2) = (x1 ∨ ∨ xk) ∧ ... ∧ (xk(k−1)+1 ∨ ... ∨ xk2).
D(f) = n = k2

Example 4: f(x1, ..., xk, y1, ..., y2k) = yx1x2...xk . D(f) = k + 1

Definition 2 (Certificates). Given x ∈ {0, 1}n with f(x) = b ∈ {0, 1} a b-certificate for x is S ⊆ [n]
such that for all x′ ∈ {0, 1}n with x′|S = x|S f(x′) = f(x).

• cx(f): smallest k such that x has a f(x)-certificate S of size |S| ≤ k

• Cb(f) = maxx:f(x)=b{cx(f)}

• C(f) = max(C0(f), C1(f))

Examples: C1(ORn) = 1, C0(ORn) = n, C0(k-Block-CNF) = k (need to show one entire zero
block), C1(k-Block-CNF) = k (need a 1 representative for each block).

Theorem 3. D(f) ≥ C(f)

Proof sketch: Every path in the best tree for f is a certificate for some input.

We will see later that D(f) ≤ C(f)2.

Definition 3 (Sensitivity). Given f, x we say that i ∈ [n] is sensitive for x if f(x) 6= f(x(i)) (flip
i-th bit of x)

• Sx(f) = # i that are sensitive for x.

2

• S(f) = maxx{Sx(f)}

Theorem 4. D(f) ≥ S(f)

Proof sketch: Let t be the best the tree for f . For every x let Tx ⊆ [n] the path on t taken on
input x. We first note that for every x |Tx| ≤ D(f) by definition of D(f). Also we note that the
set of sensitive values for x is a subset of T , since values not in the path cannot change the value
of the function. Then Sx ≤ |Tx|, and thus Sx ≤ D(f) for every x.

Definition 4 (Block Sensitivity). Given f, x we say that B ⊂ [n] is sensitive for x if f(x) 6= f(x(B))
(flip all bits indicated by B)

• bsx(f): maximum k such that there are disjoint B1, ..., Bk where Bi is sensitive for x

• bs(f) = maxx{bsx(f)}

Theorem 5. D(f) ≥ C(f) ≥ bs(f) ≥ S(f)

Proof Sketch: We will prove that C(f) ≥ bs(f). Fix an input string x. Each sensitive block for
x must contain a member of a certificate for x. Otherwise, flipping the bits of a sensitive block B
not containing a certificate member will change the value of the function. However, both strings x
and x(B) have same certificate, reaching the contradiction.

3

	First Lower Bound: Sorting through comparisons
	Decision Trees

