
COMS 6998: Lower Bounds in Theoretical Computer Science Sep 17, 2013

Lecture 3 – Degree and Block Sensitivity; Evasiveness

Instructor: Xi Chen Scribe: Yuan Kang

1 Relationship between Degree and Block Sensitivity

Last time we proved the following theorem:

Theorem 1. If a single-variable polynomial, p : R→ R, has the following properties:

• ∀i ∈ {0, 1, . . . , n} : p(i) ∈ [b1, b2] for some constants b1, b2.

• ∃x ∈ [0, n] : |p′(x)| ≥ c, for some constant c.

Then deg(p) ≥
√

cn
c+b2−b1 .

We want to use it to prove the following theorem:

Theorem 2. bs(f) ≤ 2(deg(f))2

Proof. Let b = bs(f), d = deg(f).

Without loss of generality assume that:

1. x = ~0 is the string that contains b disjoint, sensitive blocks. If that is not the case, then we can

prove the inequality with f1(x) = f(x ⊕m), where m is the string that satisfies the condition for

bs(f) = b. We will denote the sensitive blocks by A1, . . . , Ab. Note that they all have 0-bits, only.

2. f(~0) = 0. Otherwise, we can use f1(x) = 1− f(x).

Let us also assign the unique, multilinear polynomial p : Rn → R, which we know has the following

properties:

1. deg(p) = d

2. ∀x ∈ {0, 1}n : p(x) = f(x)

Let us define a function q, that takes as input a bit for each sensitive block. In particular:

q(y1, . . . , yb) = p(x1, . . . , xn)

Where ∀i ∈ [n], we replace xi as follows.{
if ∃j ∈ [b], st. i ∈ Aj , set xi = yj

else, set xi = 0

q has the following properties:

1

1. Since q just replaces the inputs of p with constants and inputs of q, we know that q is a multilinear

polynomial, where deg(q) ≤ deg(p) = d

2. ∀y ∈ {0, 1}b, q(y) ∈ {0, 1}. 1

3. By our assumption, q(~0b) = p(~0n) = 0.

On the other hand, flipping exactly one bit in ~0b is equivalent to flipping exactly one sensitive block

in ~0n. Specifically, if we define ~ei ∈ {0, 1}b to have only one 1-bit, at position i ∈ [b], q(~ei) flips

all the bits xj , where j ∈ Ai, while the rest remain 0. So by the definition of sensitive blocks,

q(~ei) = p(~0(Ai)) = 1.

Now we symmetrize q. If we define Sb as the set of all b-size permutations, define qsym(x) =
1
b!

∑
π∈Sb

q(π(x)). It is easy to see that qsym has the following properties:

1. qsym is also a multilinear polynomial , where deg(qsym) ≤ deg(q) = d. 2

2. qsym is symmetric. In other words

∀π ∈ Sb,∀x ∈ {0, 1}b, qsym(x) = qsym(π(x))

3

We introduce an additional lemma to turn the multilinear polynomial into a single-variable polyno-

mial, so that we can use the aforementioned theorem.

Lemma 3. For a symmetric function, qsym : {0, 1}b → {0, 1}, of degree d′, there exists a function,

r : {0, . . . , b} → {0, 1}, so that ∀x ∈ {0, 1}b, qsym(x) = r(|x|), and deg(r) ≤ d′.

Proof. Since qsym is symmetric, we can inductively prove that the polynomial is of the form:

qsym =
d′∑
i=0

ciVi

Where ci is some constant, and Vi contains all the monomials of i variables. 4

This form gives us the single-variable function:

r(|y|) =
d′∑
i=0

ci

(
|y|
i

)
1This is because q passes a subset of {0, 1}n into p, which must output 0 or 1.
2qsym permutes the input variables of q, adds the results together, and divides them by a constant.
3This property holds, because when either x or π(x) is passed into the symmetrization formula, the term for π′(π(x))

in the second sum corresponds to exactly one term, π′′(x) in the first sum, since the composition, π′′ = π′π, is also a
permutation.

4Clearly a constant multilinear polynomial is of the form c0. When we inductively add on terms of the next degree, k,
each new monomial must have the same coefficient, ck. Otherwise, if there is a k-degree monomial of a different coefficient,
its contribution, if only all of its bits are set to 1, is different from the contribution of some other k-degree monomial, with
its respective input.

2

We can replace Vi with

(
|y|
i

)
, because the value of Vi is exactly the number of monomials with all of its

i bits set to 1, and since Vi contains all ways to choose i 1-bits from a set of |y|, there are

(
|y|
i

)
such

monomials. Moreover

(
|y|
i

)
= 1

i!

∏i−1
j=0(|y| − j), which is a polynomial over |y|, of degree i ≤ d′, so r is a

polynomial over |y| of degree at most d′.

In addition to the results of the lemma, our r has these additional properties:

1. r(0) = qsym(~0b) = 1
b!

∑
π∈Sb

q(~0b) = 1
b!

∑
π∈Sb

0 = 0.

2. r(1) = qsym(~ei) = 1
b!

∑
π∈Sb

q(π(~ei)) = 1
b!

∑
π∈Sb

1 = 1.

3. ∀i ∈ {2, . . . , b} : r(i) ∈ [0, 1], since r must still output 0 or 1, as did qsym and q.

When we combine the first two properties, the Mean Value Theorem tells us that there exists x ∈ [0, 1] ⊆
[0, n], where r′(x) = 1−0

1−0 = 1.

Based on the relationship between the polynomials we constructed, and Theorem 1:

deg(f) = deg(p) ≥ deg(q) ≥ deg(qsym) ≥ deg(r) ≥
√

1× n
1 + 1− 0

=

√
n

2
≥

√
b

2

deg(f) ≥
√
b

2

2(deg(f))2 ≥ b

Overall, using the inequalities from the past lectures, we have:

deg(f) ≤ D(f) ≤ (bs(f))3 ≤ (2(deg(f))2)3 = 8(deg(f))6

2 Evasiveness Conjectures and Theorems

2.1 Graph Properties and the AKR Conjecture

We begin with defining the terms used in the AKR conjecture.

Definition 4. x ∈ {0, 1}

n
2

represents the graph, G = ([n], E), where for each potential edge {i, j},

x{i,j} = 1⇔ {i, j} ∈ E.

Definition 5. A graph property is the boolean function, f : {0, 1}

n
2

→ {0, 1}, if for any two graphs,

3

x ∈ {0, 1}

n
2

, y ∈ {0, 1}

n
2

:

If ∃ permutation π ∈ Sn, so that x{i,j} = y{π(i),π(j)}, ∀i ∈ [n], j ∈ [n]

Then f(x) = f(y)

Intuitively, we mean that f is independent of labeling, and that it has the same value for 2 isomorphic

graphs.

Note that, in spite of similarities, a graph property is not the same as a symmetric function. To

permute an edge, all edges sharing an endpoint must also be permuted, while for a symmetric property,

any permutation of the bits is allowed.

Definition 6. A boolean function, f : {0, 1}n → {0, 1} is monotone iff f(x) ≤ f(y) for all x ≤ y, by

which we mean ∀i ∈ [n] : xi ≤ yi.

There are many non-trivial examples of graph properties that are monotone, such as connectivity, or

where 1− f(x) is monotone, such as planarity. So far, all the examples we know are evasive. This gives

rise to the AKR conjecture:

Definition 7. AKR Conjecture:

Every non-constant, monotone graph property is evasive, ie. D(f) =

(
n

2

)
.

We do know the following:

• D(f) = Ω(

(
n

2

)
). But we do not know if the factor must be 1.

• If n is a prime power pk, then f is evasive. We will prove this from a more general theorem.

2.2 General Evasiveness

We can generalize the AKR conjecture. But we also need some other generalized definitions first:

Definition 8. A boolean function, f : {0, 1}n → {0, 1} is invariant with relation to permutation π ∈ Sn,

if ∀x ∈ {0, 1}n : f(x) = f(π(x)).

Definition 9. A boolean function, f : {0, 1}n → {0, 1} is invariant with relation to permutation set

S ⊆ Sn, if ∀π ∈ S, f is invariant with relation to π.

Definition 10. A permutation group, S ⊆ Sn, is transitive if ∀i ∈ [n], j ∈ [n] : ∃π ∈ S st. π(i) = j. In

other words, any particular position can be permuted to another position.

Definition 11. Evasiveness Conjecture:

A non-constant, monotone, boolean function, f : {0, 1}n → {0, 1} that is invariant with relation to a

transitive permutation group, S ⊆ Sb, is evasive.

This implies the AKR conjecture, since the set of all the possible node permutations form a group,

and let us permute any edge (ie. any two nodes) to any edge.

We can prove the conjecture for the case of a prime power, n = pk. We will need some more definitions

and lemmas.

4

Definition 12. f−1(0) = {x ∈ {0, 1}n : f(x) = 0}
Likewise, f−1(1) = {x ∈ {0, 1}n : f(x) = 1}.

The next two lemmas relate to evasiveness and the number of inverses.

Lemma 13. If |f−1(0)| (respectively |f−1(1)|) is odd, then D(f) = n, ie. f is evasive.

Proof. Assume non-evasiveness, so that all leaves have a depth of at most n− 1.

So if we pick a leaf of value 0 (respectively 1), of depth d ≤ n− 1, we know that the distinct 5 strings

that will take the path to this leaf will have d bits specified, and will vary in the remaining n − d bits.

So there are 2n−d strings that take the path to this leaf, which is an even number, since n − d ≥ 1. So

each 0-leaf (respectively 1-leaf) contributes an even number to |f−1(0)| (respectively |f−1(1)|), which is

then even.

The next, stronger lemma is what we will use for the theorem we will prove, but it relies on the same

principles:

Lemma 14. If f is not evasive, f−1(0) (respectively f−1(1)) must have the same number of strings with

even and odd Hamming weights.

Proof. Again, assume non-evasiveness.

So if we pick a leaf of value 0 (respectively 1), which must have depth d ≤ n − 1, the strings that

take the path to this leaf will vary by n − d ≥ 1 unspecified bits. So a string, x, that ends in this leaf

is in f−1(0) (respectively f−1(1)). We can flip the parity of its Hamming weight, while still keeping it

in f−1(0) (respectively f−1(1)), by flipping its last unspecified bit, ie. by changing its Hamming weight

by 1. So there is a one-to-one relationship between the strings with even and odd Hamming weights in

f−1(0) (respectively f−1(1)), so that they are same in number.

Example 15. Define the following function:

f(x) =

{
1, if there are 3 consecutive 1’s

0, otherwise

f is evasive for n = 7, but not for n = 5. For example, we can construct the following tree of depth 4.

5A string cannot end at multiple leaves, because then the string would have to have both values at the first node where
the paths split

5

We have 8 strings in f−1(1), 4 of which have even Hamming weight, and 4 of which have odd Hamming

weight. The leaf reached by x3 → x2 → x1 → 1, of depth 3 contributes 25−3 = 4 strings, where

11100, 11111 have odd Hamming weight, and 11101, 11110 have even Hamming weight. The leaf reached

by x3 → x2 → x4 → x5 → 1, of depth 4 contributes 25−4 = 2 strings, where 00111 has odd Hamming

weight, and 10111 has even Hamming weight. Likewise, the leaf reached by x3 → x2 → x1 → x4 → 1, of

depth 4 contributes 2 strings, where 01110 has odd Hamming weight, and 01111 has even Hamming

weight.

Theorem 16. (Rivest-Vuillemin)

If n is a prime power (n = pk), f : {0, 1}n → {0, 1} is invariant with relation to a transitive

permutation group, S, and f(~0) 6= f(~1), then f is evasive.

Proof. For the proof, we will be counting over what we call orbits:

Definition 17. For a transitive permutation group, S:

∀x ∈ {0, 1}n : orbit(x) = {π(x) : π ∈ S}
It has the following properties:

1. y ∈ orbit(x)⇒ x ∈ orbit(y), by the existence of inverses in groups.

2. y ∈ orbit(x)⇒ |y| = |x|

3. This implies that orbit(~0) = {~0}, and orbit(~1) = {~1}

We will show that |orbit(x)| is divisible by p, as long as x 6∈ {~0,~1}, and then we will show that the

number of strings of even and odd Hamming weights is not the same.

∑
y∈orbit(x)

|y| =
∑

y∈orbit(x)

|x|

= |orbit(x)||x|

6

Alternatively, we can express the sum as:∑
y∈orbit(x)

|y| =
∑

y∈orbit(x)

∑
i∈[n]

yi

=
∑
i∈[n]

∑
y∈orbit(x)

yi

The inner sum is constant, since we can permute i

to any other j ∈ [n] by transitivity, so lets fix i = 1

= n
∑

y∈orbit(x)

y1

∴ n|
∑

y∈orbit(x)

|y| ⇒ n|(|orbit(x)||x|)

∀x 6∈ {~0,~1}, we know that 1 ≤ |x| ≤ n− 1, so |x| cannot be divisible by n, so it does not contain all

the k prime factors, p, which means that |orbit(x)| must contain the remaining prime factors, p. 6 So

p|(|orbit(x)|).
Now let us count the elements of f−1(0). Only complete orbits can be included in the set, by the

invariance property. Without loss of generality, let us assume that ~0 ∈ f−1(0). Otherwise, we can

perform the same proof with f−1(1). Because of our assumption, f−1(0) contains orbit(~0) = {~0}, but not

orbit(~1) = {~1}, else f(~0) = f(~1) = 0. In addition, f−1(0) contains a union of, say l additional, disjoint 7

orbits. Lets denote these orbits by orbit(xi), where i ∈ [l].

We are interested in showing that the number of elements in f−1(0) with even Hamming weight,

subtracted by the number of elements in f−1(0) with odd Hamming weight is non-zero. We can rewrite

the difference, and split it according to the previous categorization:∑
y∈f−1(0)

(−1)|y| = (−1)|
~0| +

∑
i∈[l]

∑
y∈orbit(xi)

(−1)|y|

= (−1)0 +
∑
i∈[l]

∑
y∈orbit(xi)

(−1)|xi|

= 1 +
∑
i∈[l]

|orbit(xi)|(−1)|xi|

We know that the terms of the sum are divisible by p, due to the |orbit(xi)| factor, so the sum must by

a multiple of p, which means that it is not −1, which is needed to cancel out the first term:∑
y∈f−1(0)

(−1)|y| 6= 1− 1 = 0

So the number of strings with even and odd Hamming weights in f−1(0) is not equal. This fails the

condition in Lemma 14, so f must be evasive.

6More formally, if we assume the opposite, |orbit(x)| and n are relatively prime, since n’s factors are either 1 or divisible
by p. So n must divide |x|, which we have said is not possible.

7By the closure of the permutations in S, inclusion in an orbit is transitive. And since we know that it is symmetric,
inclusion in an orbit is an equivalence relationship. That means that two orbits are either identical or disjoint.

7

8

